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The correlated motion of vacancies breaks the translational symmetry of 
the jump probability if the concentraton of the vacancies varies from place 
to place. This leads to a significant deviation from the result of linear 
diffusion theory. The problem is treated by using the model of a generalized 
random walk in which the probabilities of a jump by the walker depend on- 
the position. 

The c o m m o n l y  assumed basic equat ion  governing a diffusion is F ick ' s  
law, 

~c 
j = - Do 0--~ (1) 

w h e r e j  is the flux densi ty and c the concen t ra t ion ;  D represents  the diffusion 
coefficient (see Manning ,  1968, 1973, and  Peterson,  1968). The re la t ion (1) 
is val id when the concent ra t ion  c and its gradient  ~c/?x are bo th  very small.  
In  cer tain prac t ica l  cases, a finite concent ra t ion  gradient  may  be main ta ined  
in a finite region. F o r  example,  let us consider  a s teady-state  diffusion across 
two para l le l  boundar ies  as shown in Figure  1. Two different concentra t ions  
are kep t  at  ci and  c2 at  the outer  sides of  the two boundar ies .  The concentra-  
t ion in between may  or  may  not  be the s t raight  (dot ted)  line AB. The 
phenomenolog ica l  studies (Barrer,  1946; Ash  and Barter ,  1971; see also 
Crank,  1975) showed that  the concent ra t ion  calcula ted in terms o f  F ick ' s  law 
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Fig. 1. A steady-state diffusion is main- 
tained across two membranes separated by 
the distance L. The dotted line AB corre- 
sponds to the linear diffusion and devia- 
tions from it represent a nonlinear 
behavior. 

must follow the straight line. Any deviations from it should come from non- 
linear effects. In the present paper we will report a source of nonlinear effect 
on a vacancy diffusion in which a deviation from Fick's law is realized. 

In Figure 2 three vacant sites are shown in a periodic lattice. The motion 
of the molecules generates that of the vacancies. I f  the concentration changes 
from place to place, the motion of the vacancies will be such that the difference 
in concentration will become smaller and smaller. 

When the concentration of vacancies is large the motion of the vacancies 
will be correlated. At a higher concentration, the movement of vacancies may 
become easier, and therefore the rigidity of the lattice may be reduced; we 
may also say that the probability of a jump by vacancy will become greater. 
This dependence of the jump probability on the concentration generates the 
position dependence if the concentration gradient exists in the system. This 
may best be understood by drawing an energy barrier diagram (LeClair, 
1958). I f  the vacancy concentration is uniform, the energy barrier will be 
symmetric at each site, as shown in Figure 3a. I f  the concentration is higher 
on the left than on the right, the barrier height will be unequal and depend on 
the site, as indicated in Figure 3b; the probability of a jump toward the right 
will be less than that toward the left. 

In order to treat the problem in a systematic manner, let us introduce 
an extended model of random walk (Uhlenbeck and Ornstein, 1930; Chandra- 
sekhar, 1943). A walker (vacancy) at the site m may take a step to the right 
and reach the site rn + 1 with the probability pro; it may take a step to the 
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)- Fig. 2. Three vacancies are shown in a lattice. 
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Fig. 3. The energy barriers are shown for a homogeneous (a) and inhomogeneous (b) 
system. 

left with the probabi l i ty  qm; or it may  remain at the same site with the prob-  
ability rm. The normal iza t ion requires that  

Pm + qm + rm = 1 (2) 

Here  it is noted that  the probabilities dependon site m, and also that  explicit 
in t roduct ion o f  the staying probability rm is essential in the following discus- 
sions. 

Let W(m,  N )  be the probabi l i ty  that  the walker,  starting f rom the origin 
O, reaches the site m after N unit  times. I t  is easily verified that  W's satisfy 
the following equat ions:  

W ( m , N )  = p m - l W ( m  - 1, N -  1) + q~+lW (m  + 1, N -  1) 

+ r,~ W(m,  N - 1) (3) 

and 

w ( 0 ,  0) = 1 

W(m, N) = 0 for  N < Im] (4) 

Let  a be the lattice spacing and to be the unit  t ime interval;  Nto =- twi l l  

now consider the limits in which 

a - > 0 ,  to --~0 

m ---> ~ ,  N--~  ~ (5) 

such tha t  

x = ma = finite 

t = Nto = finite 

a2/to = finite 

(6) 

denote  the elapsed time, and x =- ma the displacement after N moves.  We 



2 7 4  H a r a  e t  a l .  

In these limits, we may introduce continuous functions: 

W(m, N)  -+ w(x, t) 

Pm -+ p(x),  qm ~ q(x), r,~ -+ r(x) 

We obtain from (3) and (4) 

aw(x, t) 
Ot 

c3 02 
- -  -- ax {Ml(x)w(x,  t)] + ~ [Mz(x)w(x, t)] 

(7) 

(8) 

a 

MI(x)  = To [p(x) - q(x)] 
(9) 

a 2 

M2(x) = ~o [p(x) + q(x)] 

w(x, 0) = a(x) 

w(oo, t) = 0 (10) 

Equation (8) is a generalized Fokker-Planck equation with the position 
dependence of Mz and 342 arising from the position dependence of the jump 
probabilities. 

In the absence of a concentration gradient, the probabilities of jumps 
are given by 

p = q = const. • exp ( -  Q/kT)  (11) 

where Q is the activation energy for a jump (see, e.g., Manning, 1968). For a 
finite (constant) gradient the activation energy will have a term linear in the 
position, as seen from Figure 3b. Thus, the energy to be overcome by a 
vacancy moving right and left may be represented by Q - bx and Q + bx, 
respectively, where b may be taken as a constant proportional to the 
concentration gradient 

Oc 
b oc ax (12) 

The linear correction term tends to zero as the gradient disappears (as it 
should). We may therefore assume that 

p(x)  = const. • exp [ ( -  Q + bx)/kT] 

q(x) = const. • exp [ ( -  Q - bx)/kT] (13) 

That is, due to the correlation of the vacancy movement, the probabilities of 
jumping toward the right and toward the left are no longer equal to each 
other. 

It is well known that the concentration c(x, t + At) of vacancies at 
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position x and time t + At is related to that at position x - Ax and time t by 
(see Manning, 1968) 

c(x, t + At) = f P(x; Ax, At)e(x - Ax, t)d(Ax) (14) 

where P(x; Ax, At) is the probability of the transition from (x - Ax, t) to 
(x, t + At). Expanding both sides of equation (14) around Ax = 0 At = 0, 
and retaining the lowest order term in At, we obtain 

~c(x,~t t) =s=~ ~.1 -~x [K~(x)c(x, t)] 

0 
- ox  J(x ,  t )  (15) 

where 

Ks(x) =- ((Ax) s) = A~olim ~1 f (Ax)sP(x; Ax, At)d(Ax) (16) 

J(x, t) = -A(x)c(x, t) - D(x) ac(x, t) (17) 
Ox 

1 aK2(x) 0(~2K3] (18) A(x)= ~\(x) 2' ax + \ ~x~ ! 

{aK3] (19) D(x) = - �89 + 0 \-~x ) 

We note that part of the flux generated by the density gradient ~c/~x, that is, 
the second term in (17), is given by 

~c _ Y(x,  t )  (20) - D(x)  

This takes the form of a generalized Fick's law with a position-dependent 
"apparent" diffusion factor D(x). 

For the vacancy motion, we may assume that 

P(x; Ax, At) = W(Ax, At) (21) 

Then, by using the formal solution of (8) : 

W(x, t) = e-Z~3(x) (22) 

L = M1(x) + ~ M2(x) (23) 
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we can evaluate the moments  Ks in (16), and obtain 

/(1 = 21//1, /(2 = -2/142 

K n = 0 ,  n ~ > 3  

The expression D(x) can be expressed as 

D(x) = D0[1 + f (x)]  

where 

(24) 

(25) 

1 a 2 
Do = 2 to (26) 

1/2(e bxm~ + e -bx/kr) 
f i x )  = 1 + e ~x/"r + e -bx/~r (27) 

where f (x)  is chosen so that  D is reduced to 

Do at x = 0 (point A in Figure 1) 

Following Barrer 's t reatment (Barrer, 1946), we can now study the steady- 
state diffusion. The steady-state concentrat ion is found to be depressed, as 
indicated by the full line, the degree o f  depression depending on the value of  
b. Figure 4 shows concentrat ion c(x) for steady state which is obtained f rom 
the equation specified by (25). 

It  is emphasized that  since b is propor t ional  to the gradient 8c/8x, D(x) 
describes a situation that is highly nonlinear. In  fact, D contains terms of  

C(x) IC i 

,.oil 
I )" B/kT = O 

(2) : B/kT = .'.'5 xl  O -~  
(5 ) :B /kT= I .SX lO -z 

> x/L 
0 I.O 

Fig. 4. Steady-state concentration. Here for simplicity we put c2 = 0 and B = bL. Note 
that B/kT = 0 represents the simple Fick's law. 
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indefinite orders in ?c/Ox since b(ocOc/ex) enters in the exponential in (27). 
The nonlinearity itself, however, simply arises f rom the assumed correlation 
of  the vacancy mot ion characterized by the single parameter  b. 

Unfortunately,  experimental data directly comparable  with the present 
theory are not  available at the present time. However,  our  theory clearly 
points out  a source o f  possible nonlinearities arising f rom the correlated 
mot ion of  the vacancies. 
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